Modeling Learner Affect with Theoretically Grounded Dynamic Bayesian Networks

نویسندگان

  • Jennifer Sabourin
  • Bradford W. Mott
  • James C. Lester
چکیده

Evidence of the strong relationship between learning and emotion has fueled recent work in modeling affective states in intelligent tutoring systems. Many of these models are based on general models of affect without a specific focus on learner emotions. This paper presents work that investigates the benefits of using theoretical models of learner emotions to guide the development of Bayesian networks for prediction of student affect. Predictive models are empirically learned from data acquired from 260 students interacting with the game-based learning environment, CRYSTAL ISLAND. Results indicate the benefits of using theoretical models of learner emotions to inform predictive models. The most successful model, a dynamic Bayesian network, also highlights the importance of temporal information in predicting learner emotions. This work demonstrates the benefits of basing predictive models of learner emotions on theoretical foundations and has implications for how these models may be used to validate theoretical models of emotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learner Modeling Based on Bayesian Networks

The work presented in this chapter lies within Learner modeling in an adaptive ed‐ ucational system construed as a computational modeling of the learner. All actions of the learner in a learning situation on an adaptive hypermedia systems are not limited to valid or invalid actions (true and false), but they are a set of actions that characterize the learning path of his formation. Thus, we can...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Hidden factor dynamic Bayesian networks for speech recognition

This paper presents a novel approach to modeling speech data by Dynamic Bayesian Networks. Instead of defining a specific set of factors that affect speech signals the factors are modeled implicitly by speech data clustering. Different data clusters correspond to different subsets of the factor values. These subsets are represented by the corresponding factor states. The factor states along wit...

متن کامل

An open and inspectable learner modeling with a negotiation mechanism to solve cognitive conflicts in an intelligent tutoring system

Some researchers have developed relevant and diverse proposals for improving the content quality of the learner model in Intelligent Tutoring Systems, mainly reducing its uncertainty. Following this aim, this paper proposes an open learner modeling approach using Bayesian networks, focusing on negotiation mechanism to solve detected cognitive conflicts that can emerge when the learner inspects ...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011